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Abstract. Video compression is currently a prominent topic for both military and
commercial researchers, due to the rapid proliferation of digital media and the sub-
sequent need to store and transmit it in a space and time-effective manner. Most
successful compression methods have been based on mathematically transforming
an image (or sequence of images) into a frequency domain representation, and then
filtering that representation to obtain a form suitable for effective encoding and
compression. Our framework can be targeted to multimedia applications where
video frames must be encoded. decoded and processed periodically within prede-
fined video frame-rates. The frames arrive at the system dynamically, and leaves af-
ter a number of instances executed. The frames execute in a discrete volt-
age/frequency processor. This framework dynamically selects the sub-bands that
maximize the energy savings in the system, such that no sub-band in the system
misses its deadline. The problem is presented as a dynamic optimal problem with
discrete constraints. Experimental results show that our algorithm present 29% en-
ergy saving.

1 Introduction

Although wavelet have their roots in approximation theory [7] and signal processing [14],
they have recently been applied to many problems in computer graphics. These graphics
applications include image editing [4], image compression [12], and image querying [3].
These applications impose strict quality of service requirements in the form of timing
constraints. Ignoring energy consumption, operating the CPU at its highest speed opera-
tion quickly drains the batteries. Thus there is a tradeoff between reduced energy con-
sumption and quality of service.

Voltage scaling technology has the potential to exploit such variability in the case of
meeting timing constraints. By adjusting the operating voltage of the processor, the en-
ergy consumption and speed can be controlled [1]. Power regulator and variable voltage
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processors with response times in the microseconds range are available [10]. Fast re-
sponse time makes it practical to dynamically adjust the voltage at run time.

Recently, researches have attempted to apply Dynamic Voltage Scaling (DVS) to video
decoding to reduce power [5, 8, 9, 11]. These studies present approaches that predict the
decoding time of incoming frames or Group of Pictures (GOPs), and reduce or increase
the processor setting based on this prediction. As a result, idle processing time, which
occurs when a specific frame decoding completes earlier than its playout time, is mini-
mized. In [6] an alternative method called Dynamic is proposed as an improvement to
these techniques. The Dynamic approach is designed to perform well even with high
motion videos by dynamically adapting its prediction model based on the decoding ex-
perience of the particular video clip being played. The same authors present another alter-
native method called frame data computation aware (FDCA) in [2]. FDCA dynamically
extracts useful frame characteristics while a frame is being decoded and uses this infor-
mation to estimate the decoding time.

The objective of out work is to develop a novel DVS technique targeting such dynamic
changing workloads. We presented a method that can be used to discern how much CPU
throughout a wavelet transform is consuming. This information can be used to no dead-
line is missed and the energy saving is maximized for each sub-band when encoding a
frame and decoding the same frame running on one processor.

This paper is structured as follows. In Section 2, we give a framework overview for the
wavelets transform scheme. We then describe how is obtained energy saving for each
sub-band, and the algorithm for selecting the optimal energy saving is showed in Section
3. Section 4 is an example showing how our scheme works on practical image. Section 5
presents the experimental results to demonstrate the performance of our low power video
encoding/decoding scheme under different workload conditions. Section 6 summarizes
our efforts.

2 Wavelet Image Compression overview.

Of the many processes available for image compression, two of the most popular trans-
formations are the Discrete Cosine Transform (DCT) used in the common JPEG format,
and the Discrete Wavelet Transform (DWT) used in the newer JPEG 2000 format. The
DWT differs from the traditional DCT in several fundamental ways. The DCT operates
by splitting the image into 8x8 blocks that are transformed independently [13]. Through
this transformation process, the energy compaction property of the DCT ensures that the
energy of the original data is concentrated in only a few of the transformed coefficients,
which are used for further quantization and encoding [15]. It is the discarding of the
lower-energy coefficients that result in image compression and the subsequent loss of
image quality. Unfortunately, the rigid 8x8 block nature of the DCT makes it particularly
susceptible to introducing compression artifacts (extraneous noise) around sharp edges in
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an image. This is the “halo effect” seen in over compressed web images. Because the
artifacts become more pronounced at higher compression ratios, JPEG’s suitability for
line drawings and cartoon-like images is significantly impaired.

In contrast to the DCT, the DWT operates over the entire image, eliminating artifacts like
those caused by the 8x8 DCT blocking. Like the DCT, the fundamental wavelet transform
is completely reversible, meaning that if the forward and reverse transforms are applied in
sequence, the resulting data will be identical to the original. In addition, the DWT is
based on sub-band coding where the image is analyzed and filtered to produce image
components at different frequency sub-bands [18]. This produces significant energy com-
paction that is later exploited in the compression process. The wavelet’s two-dimensional
nature results in the image visually being divided into quarters with each pass through the
wavelet transformation. A key effect of this transformation is that all of the high pass
quadrants in the image contain essentially equivalent data [16]. A wavelet video compres-
sion, transmission, and decompression process that represents the target application of
this vector processor is shown in Figure 1.

Figure 1: Wavelet Compression, Transmission, and Decompression Process
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In this process, a single image or video frame is digitized by a camera and frame grabber.
This image is then fed to a wavelet compression system. First, the compression system
performs a wavelet transform of the image. This mathematical transform, which is per-
fectly reversible, converts the original image into a form suitable for encoding through a
reversible spatial frequency separation. Next, the transformed image is quantized. This
creates redundancy in the transformed image by reducing the number of allowable pixel
values and thus the number of color or chrominance levels. Quantization is not reversible
and is the principle cause of data loss in lossy compression. (The other cause of data loss
can be attributed to floating-point rounding errors when calculating forward and inverse
transformations with non-integer wavelets). The resulting bit stream from these two
stages contains large blocks of redundant data that the encoder can easily locate and
mathematically remove. At this point, a single image or video frame has been compressed
into a bit stream that is some appreciable fraction of its original size, and is ready to be
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stored or transmitted to the destination system. Once at the destination, the process is
reversed, whereby the image is first decoded, dequantized, and then inversed transformeq
to arrive at what is hopefully a convincing reproduction of the original image.

2.1) Wavelet transform.

In the field of wavelets, the modified Haar Wavelet (referred to as Haar*) is traditionally
used for rudimentary image compression because of its algorithmic simplicity and low
computational complexity due to an integer-based design [17]. When the wavelet is ap-
plied through its filtering process producing the scaling function coefficients (low-
frequency) and wavelet coefficients (high-frequency). From the application of the Haar*
wavelet, it is evident that the scaling function coefficient is simply the average of two
consecutive pixel values, while the corresponding wavelet coefficient is the difference
between the same two pixel values. The scaling function coefficients appear to contain all
the image data, while the wavelet coefficients appear to be zero (black). If, however, the
raw data was examined, it would be evident that the coefficients are only mostly zero. In
reality, the wavelet coefficients contain the difference between adjacent pixel values,
which is the high-frequency edge information. Because the high-frequency coefficients
approach zero, the encoder is more easily able to remove redundant information from the
image.

Once the full wavelet transformation has been applied to two dimensions, the process can
be repeated again by filtering only the low-frequencies quadrant of the image. This low
frequency quadrant is the visible image in the rightmost frame. By repeating the filtering
process several times over ever-shrinking low-frequency quadrants, the multiresolution
aspect of the wavelet transform comes into effect.

Figure 2. Wavelet Transform Sub-bands.
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Because the multiresolution wavelet transform cycles by repeatedly processing the low-
frequency information, some of the image data is processed more than once. Because of
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this, the lower frequency wavelet coefficients are transformed by a wavelet of differing
amplitude and duration than the higher frequency wavelet coefficients.

Thus, each sub-band shown in figure 2 was generated by a different wavelet function. It
gives the different coefficient sub-bands. The Level 1 correspond T2, T3, and T4. Level 2
(T6, T7 and T8). Level 3 TI0, T11, and T12. Level 4 (T14, T15, and T16) and Level 5
(T17, T18, T19, and T20).

3. Formulation of the problem.

The problem can be formulated as follows. Each time a new frame arrives at or leaves the
system, the problem is to determine the mode (speed) of execution of the sub-bands such
that no sub-band misses its deadline and the energy savings of the system is maximized.
Each frame in the system execute in a discrete voltage/frequency processor. Note that a
solution to this problem must be computed each time a new frame arrives or leaves the
system, therefore a solution with probably cause deadlines to be missed.

The problem is formulated as:
2

max J =Y. S, [u(k)]
k=0

wknio
subject to x(k+1) = x(k)—u(k)
x(0)=1.0,
with : x(3)=0,
u(k) < x(k),
u(k) € {1.0,0.8,0.6,0.4,0.15} for k=0,1,2

where
k = correspond to sub — bands

S, [u(k)] = energy saving
x(k) = variable of state
u(k) = control variable,(speed to select).

Bellman’s optimality principle is used by compute the state variable in each stage, as
follows:

Step 1: x(3) is calculated as follow:
J;{x(3)}=0
Step 2: x(2) €{1.0,0.8,0.6,0.4,0.15} is:
J{x(2)} = max{S, [u(2)+J; {x(2) - u(2)}},
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where:

x(3) = 0= x(2) - u(2), u(2) < x(2), u(2) € {0.15,0.4,0.6,0.8,1.0}

Step 3: x(1) €{1.0,0.8,0.6,0.4,0.15}, the equation that corresponds is:
J{x(1)} = mgf{sllu(l)ﬂ‘J; {x()-u()}},

where:

u(l) < x(1), u(1) €{0.15,0.4,0.6,0.8,1.0}

Step 4: x(0)=1.0 is:
Jo{1.0}= r:l(g)’({solll(o)+ Jy {1.0-u(0)}},

where:

u(0) <5, u(0) € {0.15,0.4,0.6,0.8,1.0)

4. Example of the algorithm.

To illustrate the execution of the proposed algorithm, we consider the image Lena and we
use five discrete speed levels {1.0, 0.8, 0.6, 0.4, 0.15}, in a discrete voltage/frequency
processor. The CPU utilization can be measured while the system is under various states
of loading. Obviously there is no way (yet) to measure CPU utilization directly. CPU
utilization must be derived from measured changes in the period of the background loop.
The average background loop period should be measured under various system loads and
then the CPU utilization can be obtained. The CPU utilization is defined as the time ‘not’
spent executing the idle task (is a task with the absolute lowest priority in a multi-tasking
system). The amount of time spent executing the idle task can be represented as a ratio of
the period of the idle task in an unloaded CPU to the period of the idle task under some
known load.

% time in the idle task = (average period of the background task with no load) * 100% /
(average period of the background task with some load ) [1]

Based on DVS technique, we adjust processor speed for each sub-band with slack recla-
mation.

In the table I present the time in micro seconds for every sub-band of the image. We
consider 5 level how is presented in figure 2. The average background task execution
time is 195 microseconds (because of space restrictions, we do not include here the details
of how obtaining this time).

Table 1 shows too the results of applying equations 2 and 3 to the first and second col-
umns in table 1.
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Table 1. Sub-bands vs. Average background loop Period.

Sub-bands [ T (microseconds) % ldle % CPU
1 974 20.02 7997
2 535 36.49 63.55
3 388 50.26 49.74
4 859 22.70 71.30
5 417 46.76 53.24
6 353 55.24 44.76
7 595 32.77 67.23
8 368 52.99 47.01
9 287 67.94 32.06
10 445 43.82 56.18
11 313 62.30 37.70
12 267 73.03 26.96
13 342 57.02 42.98
14 281 69.39 30.61
15 247 78.95 21.05

27

After the executing the first sub-band of the level 1, to the maximum speed, we can obtain
the percentage of utilization of this sub-band, the percentage idle is assigned to sub-bands
2 and 3, the executing speed the these sub-bands depending the result of first sub-band.
Later, for the others levels, calculating the percentage of utilization for the first sub-band
of each level and assigning the percentage idle to the two following sub-bands. In the
table 2 is presented the percentage of energy saving level by level. The total energy sav-
ing of the all image is 44.19 %.

Table 2. Energy Saving for level.

Level Sub-band % Encrgy Saving Total
1 1 0
2 20.02
3 20.02 =37.50%
2 4 0
5 22.70
6 22.70 =36.40%
3 7 0
8 32.77
9 32.77
4 10 0 =42.64 %
11 43.82
12 43.82
5 13 0 =5553%
14 57.02
15 57.02
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5. Simulation Experiments.

Our aim in this simulation experiments, was to verify the proposed algorithm in achieving
our optimality criteria using different sizes of frames. The goals in this simulation ex-
periments is to measure the energy saving over a large number of frames. Each value on
figure 3 represents the results obtained from a set of 30 frames. We can observed that if
the number of frames increase, the energy saving decrease until 29% of energy saving,
On each frame generated, the metrics Energy Savings is obtained as a result of the execu-
tion of algorithm. The Execution Time metric denotes the execution time of each sub-
band, which measures the physical time in microseconds, using a PC Intel PENTIUM
Centrino 3.2 GHZ with 512MB of RAM and running on the Operating System SUSE
Linux 9.3. The function used for the measurements is psched_get_time().

Figure 3. Energy vs. frames.
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6. Conclusions

In this paper we proposed a power optimization method for a video encoder/decoder
application running on a variable speed processor with five discrete speeds. The problem
is presented as a linear problem with discrete constraints. Approximate solutions pro-
posed are based on Bellman equation. Experimental results show that our algorithms yield
near optimal performance with low complexity. For one frame is obtained 44.19% of
energy saving but top 20 frames the energy saving is 29%. Also, as part of our future
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work, we intend to extend our framework for running a real-time operating systems, im-
prove the performance of our algorithm for increasing the energy saving of its perform-
ance and extend the framework to consider a large set of frames.
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